Protective effects of phosphodiesterase-4 (PDE-4) inhibition in the early phase of pulmonary arterial hypertension in transgenic sickle cell mice.

نویسندگان

  • Lucia De Franceschi
  • Orah S Platt
  • Giorgio Malpeli
  • Anne Janin
  • Aldo Scarpa
  • Christophe Leboeuf
  • Yves Beuzard
  • Emmanuel Payen
  • Carlo Brugnara
چکیده

Pulmonary arterial hypertension (PAH) is one of the leading causes of morbidity and mortality in adult patients with sickle cell disease (SCD). Here, we developed a model to study the early stage of PAH in SCD. We exposed wild-type and transgenic sickle cell SAD (Hbb(s)/Hbb(s)) mice to hypoxia (8% O(2)) for 7 days. Prolonged hypoxia in SAD mice only induced 1) increased neutrophil count in both bronchoalveolar lavage (BAL) and peripheral circulation; 2) increased BAL IL1beta, IL10, IL6, and TNF-alpha; and 3) up-regulation of the genes endothelin-1, cyclo-oxygenase-2, angiotensin-converting-enzyme, and IL-1beta, suggesting that amplified inflammatory response and activation of the endothelin-1 system may contribute to the early phase of PAH in SCD. Since phosphodiesterases (PDEs) are involved in pulmonary vascular tone regulation, we evaluated gene expression of phosphodiesterase-4 (PDE-4) isoforms and of PDE-1, -2, -3, -7, -8, which are the main cyclic-adenosine-monophosphate hydrolyzing enzymes. In SAD mouse lungs, prolonged hypoxia significantly increased PDE-4 and -1 gene expressions. The PDE-4 inhibitor, rolipram, prevented the hypoxia-induced PDE-4 and -1 gene up-regulation and interfered with the development of PAH, most likely through modulation of both vascular tone and inflammatory factors. This finding supports a possible therapeutic use of PDEs inhibitors in the earlier phases of PAH in SCD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drug Therapy in Patients with Chronic Thromboembolic Pulmonary Hypertension

Background: Chronic Thromboembolic Pulmonary Hypertension (CTEPH) results from the obstruction of predominantly major pulmonary vessels by organized blood clots and is one of the causes of pulmonary hypertension. The disease is still underdiagnosed and the true prevalence is not clear. The objective of this study was to determine the clinical characteristics and current management of patients w...

متن کامل

Partial reversal of experimental pulmonary hypertension by phosphodiesterase-3/4 inhibition.

Phosphodiesterase (PDE) inhibitors are currently under investigation for the therapy of pulmonary hypertension. The present study was designed to investigate chronic effects of oral pumafentrine, a mixed selective PDE-3/4 inhibitor, in monocrotaline (MCT)-induced pulmonary hypertension in rats. Treatment with pumafentrine (10 mg.kg(-1) daily) from week 4 to 6 after a single injection of MCT (60...

متن کامل

cAMP phosphodiesterase inhibitors increases nitric oxide production by modulating dimethylarginine dimethylaminohydrolases.

BACKGROUND Pulmonary arterial hypertension is characterized by a progressive increase in pulmonary vascular resistance caused by endothelial dysfunction, inward vascular remodeling, and severe loss of precapillary pulmonary vessel cross-sectional area. Asymmetrical dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, and its metabolizing enzyme dimethylarginine dimethylaminoh...

متن کامل

THE EFFECTS OF CAPTOPRIL ON PULMONARY AND SYS TEMIC ARTERIAL PRESSURES IN HIGHALTITUDE PULMONARY HYPERTENSION

The purpose of this investigation was to assess the effect of captopril on both systemic (P.a) and pulmonary arterial pressures (PPA) in patients with high-altitude pulmonary hypertension (HAPH). Seventeen patients (mean age 44±6.8 years) with HAPH and mild to moderate systemic arterial hypertension were included in the study. All patients underwent right heart catheterization with measurem...

متن کامل

Vascular Medicine cAMP Phosphodiesterase Inhibitors Increases Nitric Oxide Production by Modulating Dimethylarginine Dimethylaminohydrolases

Background—Pulmonary arterial hypertension is characterized by a progressive increase in pulmonary vascular resistance caused by endothelial dysfunction, inward vascular remodeling, and severe loss of precapillary pulmonary vessel cross-sectional area. Asymmetrical dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, and its metabolizing enzyme dimethylarginine dimethylaminoh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 22 6  شماره 

صفحات  -

تاریخ انتشار 2008